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Abstract—FUZZBUSTER is a host-based adaptive security
system that automatically discovers, refines, and repairs vulner-
abilities in hosted applications in order to prevent cyberattacks.
FUZZBUSTER must decide when to adapt its applications,
when to revoke its previous adaptations, and when to sacrifice
functionality to improve security. This requires an adaptation
quality metric that captures (1) an application’s susceptibility
to cyberattacks and (2) an application’s functionality, since
adapting an application affects both of these factors. FUZZ-
BUSTER uses different types of test cases to measure security
and functionality. In this paper, we describe FUZZBUSTER’s
adaptation metrics and we present two different policies for
balancing security and functionality. We provide empirical
results comparing these policies, and we also demonstrate
how FUZZBUSTER can temporarily sacrifice the functionality of
hosted applications to increase host security, and then restore
functionality when more favorable adaptations are found.
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I. INTRODUCTION

Cyber-intrusions pose a constant threat to today’s com-
puter systems, and the number of intrusions increases every
year [1], [2]. Cyber attackers use sophisticated tools to detect
and exploit system vulnerabilities (e.g., [3], [4]). This creates
a demand for systems that can quickly react to observed ex-
ploits with automatic diagnosis and adaptation. Furthermore,
if the system can proactively discover a vulnerability before
an attacker exploits it, zero-day exploits might be entirely
prevented.

We are developing FUZZBUSTER under DARPA’s Clean-
slate design of Resilient, Adaptive, Survivable Hosts
(CRASH) program to provide self-adaptive immunity
against cyber-attacks. For an in-depth discussion of FUZZ-
BUSTER’s capabilities, see [5], [6], [7]. FUZZBUSTER uses
a diverse set of custom and off-the-shelf fuzz-testing tools
to perform protective self-adaptation. Fuzz-testing tools
find software vulnerabilities by exploring millions of semi-
random inputs to a program. FUZZBUSTER also uses them
to refine its understanding of known vulnerabilities, clar-
ifying which types of inputs can trigger a vulnerability.
FUZZBUSTER’s behavior falls into two general classes, as
illustrated in Figure 1:

1) Proactive: FUZZBUSTER discovers novel vulnerabili-
ties in applications using fuzz-testing tools. It refines
its models of the vulnerabilities and then repairs them
or shields them before attackers find and exploit them.
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Figure 1. When reacting to an observed fault, FUZZBUSTER creates
an exemplar that reflects the environment and inputs at the time of the
fault. During proactive exploration, FUZZBUSTER synthesizes exemplars
that could lead to a novel fault.

2) Reactive: FUZZBUSTER is notified of a fault in an
application (potentially triggered by an adversary).
FUZZBUSTER subsequently tries to refine the vulnera-
bility and repair or shield it against attackers. Reactive
vulnerabilities pose a greater threat to the host, since
these may indicate an imminent exploit by an attacker.

FUZZBUSTER’s primary objective is to protect its host by
adapting its applications, but this may come at some cost.
For example, applying an input filter or a binary patch may
create a new vulnerability, re-enable a previously-addressed
vulnerability, or otherwise negatively impact an application’s
usability by changing its expected behavior. This illustrates
a tradeoff between functionality and security, and measuring
both of these factors is important for making decisions about
adaptive cybersecurity.

This paper describes how FUZZBUSTER evaluates the
state of its applications with respect to security (i.e., reac-
tive and proactive vulnerabilities) and functionality. These
evaluations determine when FUZZBUSTER applies a new
adaptation or removes a prior adaptation.

We begin by outlining FUZZBUSTER’s process of discov-
ering, refining, and repairing vulnerabilities, which motivates
our research on adaptation metrics. We then describe our ap-
proach and summarize the results of several experiments that
demonstrate FUZZBUSTER’s adaptation metrics in action.

A. FUZZBUSTER Active Cybersecurity

FUZZBUSTER tests and adapts multiple applications on
its host. When FUZZBUSTER discovers a fault in one of



these applications— or when it is notified of a fault by its
host— it represents the fault as an exemplar that contains
information about the system’s state when it faulted, as
shown in Figure 1.

An exemplar includes information for replicating the fault,
such as environment variables and data passed as input
(e.g., via sockets or stdin) to the faulting application.
Some of this data may be unrelated to the underlying
vulnerability (e.g., the fault might be replicated without a
specific environment variable binding). FUZZBUSTER uses
the fuzz-testing tools in Table I to incrementally refine the
exemplar, trying to characterize the minimal inputs needed to
trigger the fault. Since time and processing power is limited,
FUZZBUSTER uses a greedy meta-control strategy [7] to
orchestrate these tools.

Refinement is an iterative process, where each task im-
proves the vulnerability profile that FUZZBUSTER uses to
characterize the vulnerability. The refinement process turns
the initial (often over-specific) vulnerability profile into a
more accurate and general profile.

FUZZBUSTER has several general adaptation capabilities,
including input filters, environment variable filters, and
source-code repair and recompilation. These protect against
entire classes of exploits that may be encountered in the
future. FUZZBUSTER uses each of these by (1) constructing
the adaptation, (2) assessing the adaptation by temporarily
applying it for test runs, and (3) applying the adaptation to
the production application if it is deemed beneficial. FUZZ-
BUSTER may apply multiple adaptations to an application
to repair a single underlying vulnerability.

Note that FUZZBUSTER can create and apply adapta-
tions during the vulnerability refinement process. So FUZZ-
BUSTER can dynamically balance security against function-
ality, applying over-general adaptations initially to quickly
shield a vulnerability, and then developing more specific and
functionality-preserving adaptations as time permits [7].

In the next section, we describe FUZZBUSTER’s metrics
for evaluating new and existing adaptations and deciding
when to apply, ignore, or remove them. We then present
experimental evidence that these adaptation metrics help
balance functionality with security.

II. ASSESSING ADAPTATIONS

FUZZBUSTER’s adaptation metrics are based on test cases:
mappings from application inputs (e.g., sockets, stdin,
command-line arguments, and environment variables) to ap-
plication outputs (e.g., stdout and return code). A faulting
test case terminates with an error code or its execution time
exceeds a set timeout parameter, while a non-faulting test
case terminates gracefully. FUZZBUSTER stores three sets
of test cases for each application under its control:

1) Non-faulting test cases (N ). These test cases did
not cause a fault when they were initially encoun-
tered. They include non-faulting test cases that FUZZ-

Table I
FUZZ-TESTING TOOLS AND OTHER ACTIONS IN FUZZBUSTER.

Discovery actions replicate and discover vulnerabilities:
• replicate-fault: Given an exemplar from the host, repli-

cate the fault under FUZZBUSTER’s control.
• gen-exemplar: Generate an exemplar that might produce a

fault.
• fuzz-2001: Generate random binary data and use it as input

for stdin, file i/o, or command arguments.
• cross-fuzz: Use Javascript and the DOM to fuzz-test web

browsers.
• wfuzz: Fuzz-test web servers with templated attacks.

Refinement actions improve vulnerability profiles:
• env-var: Identify environment variables that are necessary for

a fault.
• smallify: Semi-randomly remove data from the faulting input

to find faulting substring(s).
• div-con: Binary search for a smaller faulting input.
• line-relev: Remove unnecessary lines from multi-line fault-

ing input.
• find-regex: Compute a regular expression to capture the

faulting input.
• insert-chars: Insert characters to generalize regular expres-

sions.
• crest: Given source code, use concolic search to find con-

straints on the faulting input [8].

Adaptation actions deploy a shield or repair a vulnerability:
• create-patch: Given a vulnerability profile, create a patch

to filter input channels and environment variables.
• verify-patch: Assess a patch created by create-patch

to ensure that it outperforms a security baseline.
• apply-patch: Apply a verified patch.
• evolve-patch: Given source code, use GenProg [9] to evolve

a new non-faulting program source and binary.

BUSTER has created internally and non-faulting test
cases that were supplied with an application for re-
gression testing. N+ is the subset of non-faulting test
cases N with correct behavior (i.e., output and return
code), given some adaptations.

2) Reactive faulting test cases (R). These include reactive
exemplars reported by FUZZBUSTER’s host (see Fig-
ure 1) and other faulting test cases encountered while
refining a reactive exemplar. Since these reflect a fault
that FUZZBUSTER itself did not originally trigger, the
underlying vulnerability may be known by adversaries.
R+ is the subset of reactive faulting test cases that are
no longer faulting, given some adaptations.

3) Proactive faulting test cases (P ). These include proac-
tive exemplars discovered by FUZZBUSTER (see Fig-
ure 1) and other faulting test cases encountered while
refining a proactive exemplar. The underlying vulner-
ability is less likely to be known by adversaries than
in the reactive case. P+ is the subset of proactive
faulting test cases that are no longer faulting, given
some adaptations.

Before FUZZBUSTER has discovered faults or been no-



tified of faults, there are no faulting test cases, so R =
P = R+ = P+ = ∅ for all applications. As FUZZBUSTER
proactively fuzzes its applications, many inputs will not
fault, so the N sets will grow. As FUZZBUSTER encounters
proactive and reactive faults, the R and P sets will grow, and
as FUZZBUSTER subsequently refines these vulnerabilities
(e.g., by creating smaller faulting test cases), those sets will
continue to grow.

FUZZBUSTER applies and removes adaptations to extend
the sets R+, P+, and N+. We have implemented two sepa-
rate policies that guide FUZZBUSTER’s adaptation behavior.
We outline these policies and then describe experiments to
evaluate their effectiveness.

A. Strict adaptation policy

Under the strict adaptation policy, when FUZZBUSTER
creates an adaptation, it temporarily applies the adaptation
and runs all of the non-faulting test cases N and the subset
of faulting test cases (in P and R) that correspond to the
current vulnerability profile. The adaptation is applied if it
meets both of the following criteria:

1) All of the non-faulting test cases retain the same output
and return code (i.e., N+ = N ).

2) All of the faulting test cases are repaired.
Consequently, this policy only allows adaptations that are

complete repairs and that preserve all known functionality,
as determined by the test cases available. Once an adaptation
is applied, it is never removed.

B. Relaxed adaptation policy

The relaxed policy allows FUZZBUSTER to sacrifice func-
tionality to fix faulting test cases. Under the relaxed policy,
fixing reactive faults (extending R+) is highest priority,
fixing proactive faults (extending P+) is next, and main-
taining the behavior of non-faulting test cases (extending
or maintaining N+) is lowest priority. FUZZBUSTER uses a
dominant comparison function to compare application states,
so it will apply or remove an adaptation to increase the size
of R+ regardless of the effect on P+, and likewise for P+

and N+. So, when FUZZBUSTER compares two application
states s1 = 〈R+

1 , P
+
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(1)

This allows FUZZBUSTER to compute strong (e.g., s1 >
s2) and equal (e.g., s1 = s2) preferences between application
states.

Before FUZZBUSTER applies an adaptation, it (1) com-
putes the current application state s over test cases, (2) tem-
porarily applies the adaptation and computes the resulting
application state s′, and (3) applies the adaptation if and
only if s′ > s. This means that each adaptation must provide
some security or functionality benefit.

Furthermore, after a new adaptation is applied, FUZZ-
BUSTER evaluates previously-applied adaptations for re-
moval, by (1) computing the current application state s,
(2) temporarily removing the adaptation in question and
computing the resulting state s′, and (3) removing it if and
only if s′ ≥ s. This means each adaptation must continally
provide security or functionality benefits, otherwise it will
be removed.

We next describe experiments that compare these policies
and illustrate the tradeoff of security and functionality.

III. EXPERIMENTS

We describe an empirical evaluation to compare strict and
relaxed adaptation policies, and then we describe a scenario
where FUZZBUSTER uses the relaxed policy to temporarily
sacrifice functionality to increase security.

For all of these experiments, we provided FUZZBUSTER
with a faulty version of dc, a Unix calculator program. This
version of dc causes a segmentation fault when either (1) the
modulo (%) operator is executed with at least two numbers
on the stack or (2) base conversion is attempted with at
least two numbers on the stack. Since many different input
sequences will produce the fault, we do not expect a single
adaptation to address the entire space of faults.

We also provided FUZZBUSTER 25 non-faulting test cases
for dc to seed the N set, with the modulo and base
conversion test cases removed, so that N = N+. These were
gathered from examples in the dc manual and the Wikipedia
dc entry.

A. Comparing strict and relaxed policies

We ran FUZZBUSTER in strict mode and then in relaxed
mode for 45 minutes using the experimental setup described
above. In both cases, FUZZBUSTER uses its discovery tools
to find vulnerabilities, its refinement tools to characterize the
vulnerabilities, and its adaptation tools to create, assess, and
apply adaptations.

1) Strict results: Figure 2 shows the results of FUZZ-
BUSTER’s strict policy. The solid red line plots |P |, the
number of proactive faulting test cases found over time,
due to discovery tasks and refinement tasks. The dashed red
line plots |P+|, the number of proactive test cases fixed
over time due to adaptations. Both of these sets increase
monotonically, and by definition, |P | is the upper bound of
|P+|. The gap between |P+| and |P | illustrates the share of
test cases that FUZZBUSTER cannot repair under the strict
policy over time. We call the area covered by this gap over
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Figure 2. FUZZBUSTER uses the strict policy to preserve its applications’
functionality throughout the course of protective adaptation.

time the exposure of the host to the vulnerability in question.
Ideally, FUZZBUSTER will minimize this exposure.

By definition, the strict policy preserves all functionality
of the application (i.e., |N+| = |N |), so we do not plot
non-faulting test cases in Figure 2.

Adaptations are numbered sequentially, starting with
“Patch 1” and increasing with each adaptation created.
As shown in Figure 2, FUZZBUSTER created over 109
adaptations in 45 minutes, but only 11 passed the strict
assessment criteria and were subsequently applied.

2) Relaxed results: Figure 3 shows the results of the
relaxed policy. This is plotted identically to the strict results,
except we also include the blue non-faulting dataset: the
solid blue line plots |N |, the number of non-faulting test
cases present; and the dotted blue line plots |N+|, the
number of non-faulting test cases with correct behavior.
Non-faulting test cases are accrued over time by running
discovery tasks that do not produce faults. The gap between
|N | and |N+| represents the loss of functionality over time.
Like the exposure gap, we want to minimize the functionality
gap.
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Figure 3. FUZZBUSTER uses the relaxed policy to sacrifice functionality
for the sake of improving security.

As shown in Figure 3, FUZZBUSTER incurs a loss of
functionality to remedy its exposure. More specifically, it
sacrifices up to 10% of its non-faulting test cases to fix
faulting test cases, and it restores the behavior of erronous
non-faulting test-cases at multiple points, e.g., around 600s
and 950s.

There are several key differences between the strict and
relaxed results:
• The P+-to-P exposure gap is much smaller in relaxed

mode than in strict mode, indicating more protection
over time in relaxed mode.

• In relaxed mode, FUZZBUSTER applied 18 of 35 (51%)
created adaptations, compared to 11 of 109 (10%) in
strict mode. This means that relaxed mode wasted less
time constructing unused adaptations.

• At the end of each run, relaxed mode yields |P | =
110 total faulting test cases, and strict mode yields
|P | = 245 total faulting test cases. This is because
FUZZBUSTER was unable to apply as many adaptations,
so it discovered more variations of similar faulting test
cases.

In relaxed mode, FUZZBUSTER does not fully restore dc’s
functionality by the end of the 45 minute trial, nor does it
restore the functionality after six hours – it retains a 10%
loss of functionality. We discuss ideas for improvement in
our conclusion.

B. Sacrificing and restoring functionality
We also ran FUZZBUSTER with a more agressive adapta-

tion creation strategy, where its filters remove significantly
more input. Figure 4 shows FUZZBUSTER’s results after
ten minutes, where overgeneral adaptations are applied to
agressively close the exposure gap with considerable loss of
functionality.

The graph is annotated to indicate where adaptations are
applied to increase security, and where they are revoked to
regain functionality.
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Figure 4. FUZZBUSTER uses the relaxed policy to apply overgeneral
patches that temporarily sacrifice functionality. These patches are later
revoked once more accurate adaptations are applied.



IV. RELATED WORK

As previously noted, the FUZZBUSTER approach has
roots in fuzz-testing, a term first coined in 1988 applied to
software security analysis [10]. It refers to invalid, random
or unexpected data that is deliberately provided as program
input in order to identify defects. Fuzz-testers— and the
closely related “fault injectors”— are good at finding buffer
overflow, XSS, denial of service (DoS), SQL injection, and
format string bugs. They are generally not highly effective
in finding vulnerabilities that do not cause program crashes,
e.g., encryption flaws and information disclosure vulnerabil-
ities [11]. Moreover, existing fuzz-testing tools tend to rely
significantly on expert user oversight, testing refinement and
decision-making in responding to identified vulnerabilities.

FUZZBUSTER is designed both to augment the power
of fuzz-testing and to address some of its key limitations.
FUZZBUSTER fully automates the process of identifying
seeds for fuzz-testing, guides the use of fuzz-testing to
develop general vulnerability profiles, and automates the
synthesis of defenses for identified vulnerabilities.

To date, several research groups have created specialized
self-adaptive systems for protecting software applications.
For example, both AWDRAT [12] and PMOP [13] used
dynamically-programmed wrappers to compare program ac-
tivities against hand-generated models, detecting attacks and
blocking them or adaptively selecting application methods
to avoid damage or compromises.

The CORTEX system [14] used a different approach,
placing a dynamically-programmed proxy in front of a
replicated database server and using active experimentation
based on learned (not hand-coded) models to diagnose new
system vulnerabilities and protect against novel attacks.

While these systems demonstrated the feasibility of the
self-adaptive, self-regenerative software concept, they are
closely tailored to specific applications and specific repre-
sentations of program behavior. FUZZBUSTER provides a
general approach to adaptive immunity that is not limited
to a single class of application. FUZZBUSTER does not
require detailed system models, but will work from high-
level descriptions of component interactions such as APIs
or contracts. Furthermore, FUZZBUSTER’s proactive use of
intelligent, automatic fuzz-testing identifies possible vulner-
abilities before they can be exploited.

V. CONCLUSION AND FUTURE WORK

FUZZBUSTER is intended to discover vulnerabilities and
then quickly refine and adapt its applications to prevent them
from being exploited by attackers. This requires representing
the quality of adaptations to help determine when to apply,
forego, and remove adaptations.

We described three different types of test cases FUZZ-
BUSTER uses for quality assessment and two different adap-
tation policies that utilize these test cases: (1) the strict
policy only applies adaptations that preserve functionality

and repair a specific subset of faulting test cases, and (2) the
relaxed policy applies adaptations to remedy (in decending
priority) reactive faults, proactive faults, and application
functionality, sacrificing lower-priority factors to address
higher-priority factors.

We presented a comparison of these policies and demon-
strated that the relaxed policy provides better protection over
time and is more efficient in using the adaptations created
by FUZZBUSTER. We also showed that, under the relaxed
policy, FUZZBUSTER will temporarily sacrifice application
functionality to increase host security: it aggressively ap-
plies over-general adaptations and then when more-specific
adaptations are developed, it revokes the initial adaptations
to restore some functionality.

Next steps for improving FUZZBUSTER’s adaptation poli-
cies include improving its ability to fully restore func-
tionality to its adapted applications. In our experiments,
FUZZBUSTER did not fully restore the functionality of the
adapted applications under the relaxed adaptation policy.
We are extending and improving FUZZBUSTER’s refinement
tools to ultimately provide more accurate adaptations that
have less impact on application functionality. We will also
provide FUZZBUSTER with domain knowledge (e.g., input
channel specifications, character sets, and grammars) to
make refinement more efficient and accurate. The metrics
described above— and illustrated in the graphs of our
experimental results— have the added benefit of helping us
evaluate our FUZZBUSTER design decisions in the future.
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